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Abstract.  Large-scale Vision-Language Models (VLMs) have
demonstrated impressive zero-shot performance in sample-level
downstream tasks (e.g., image classification), driven by their
powerful generalization ability. However, they still struggle in
instance-level tasks, e.g., zero-shot Referring Expression Compre-
hension (REC), which requires precisely locating the target instance
in an image based on a provided text caption. To address this issue,
we propose Multimodal Semantic Decoupled Prompting (MSDP), a
simple yet effective prompt engineering approach that contains both
textual- and visual-focused instance-level understanding prompting.
Specifically, we first propose a novel textual restructure strategy to
eliminate the impact of task-irrelevant semantic information, steer-
ing the model’s attention at the textual understanding level. Mean-
while, we design a united visual prompt at the visual understanding
level that maximally activates the instance-level understanding ca-
pabilities of VLMs. Experiments on several benchmarks reveal that
the proposed approach outperforms state-of-the-art (SOTA) methods.
The code is available at repository,

1 Introduction

The development of large-scale vision-language models has enabled
various sample-level downstream vision tasks [3}4[0L 17, [18] 26} 31]],
such as image captioning [11 [5} 24} [30] and visual grounding [19,
[37], to achieve exceptional zero-shot performance, powered by the
advanced generalization capabilities. However, the lack of an explicit
instance-level process continues to limit the performance of existing
VLMs in zero-shot instance-level tasks, e.g., zero-shot REC
[39] [38]), which seeks to match an arbitrary given text caption with
the corresponding target proposal from multiple candidates within
an image.

To solve these problems, existing studies can be broadly classi-
fied into two main pathways: 1). finetuning-based methods; 2). visual
prompt-based methods. The finetuning-based methods seek to im-
prove instance-level understanding capabilities by incorporating ad-
ditional instance-level finetuning tasks [[6}[T1}28]. Specifically, exist-
ing works typically construct scene graphs or triplets for both visual
and textual modalities, intending to explicitly map these elements
and learn the relationships and attributes between different entities,
thereby enhancing instance-level understanding capabilities. Unlike
the aforementioned method, which requires additional task design
and retraining resources, the visual prompt-based methods [20}
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Figure 1. Comparison of the SOTA visual prompt-based method FGVP
with the proposed approach in activating VLMs’ instance-level understand-
ing capabilities. VP: visual prompt-based methods. TP: Textual Prompt (e.g.,
Textual Restructure). Deeper red shows more focus on that specific area.

[27]] focus on leveraging the inherent instance-level understanding
abilities of VLMs by incorporating visual prompts (e.g., boxes [22]],
circles [20]], and attention matrix [4Q]). Early attempts 22 aim
to leverage bounding boxes of varying shapes and colors to guide
the model’s attention. Recent studies have begun to explore
fine-grained visual prompts and investigate their relationship with the
attention mechanisms of VLMs.

However, existing visual prompt-based methods ignore the textual
modality, which may fail to fully leverage VLMs’ inherent instance-
level understanding capabilities. To verify the intention, we first an-
alyze the SOTA visual prompt-based method FGVP’s attention
to the target region, as depicted in Fig. [} The results indicate that
existing visual prompt-based methods fail to focus fully on the target
region, suggesting that the potential of instance-level understanding
capabilities remains to be explored. Conversely, by integrating the
textual modality, our approach enables the model to focus more ef-
fectively on the target region.

Therefore, we propose a simple yet effective approach called Mul-
timodal Semantic Decoupled Prompting (MSDP) for zero-shot REC.
Unlike existing methods focusing solely on visual perception, the
proposed MSDP emphasizes the activation of multimodal instance-
level understanding capabilities and introduces a textual restructure
strategy along with the united visual prompts to steer the model’s at-
tention in tandem. Specifically, the textual restructure module aims
to eliminate the influence of irrelevant semantic information, thereby
directing the model’s attention away from non-relevant textual se-
mantics. Meanwhile, the united visual prompt seeks to harness the
benefits of multi-granularity visual prompts, thereby optimizing the
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activation of instance-level understanding abilities. Additionally, our
experimental results demonstrate that when the inherent instance-
level understanding capabilities of the model are effectively and fully
activated through the proposed MSDP framework, it consistently
outperforms existing state-of-the-art methods, even those that rely
on fine-tuning in zero-shot REC.

2 Related Work
2.1 Large-scale Vision-Language Models

Leveraging the generalization capabilities of large-scale pretraining,
VLMs, e.g., CLIP [17], have demonstrated impressive zero-shot per-
formance on sample-level tasks like image classification [25/[31] and
image-text retrieval [29} |33| 32]]. This advancement further inspires
researchers to leverage large language models to develop more pow-
erful VLMs [13| [15 21]]. FLAVA [21] incorporates both unimodal
and multimodal pretraining tasks, including cross-modal alignment
and multimodal fusion objectives, to develop a unified model that
spans all modalities. BLIP-2 [13] employs a two-stage pretrain-
ing strategy that leverages a frozen image encoder and a powerful
large language model, enabling efficient language-image pertaining.
LLaVA [15] trains a connector to align image-text features and per-
forms end-to-end finetuning on multimodal instruction data.

Nevertheless, for instance-level tasks (e.g., zero-shot REC) requir-
ing instance-level understanding capabilities (i.e., identifying spe-
cific instances of visual scenes and complex text), current methods
still require the design of specialized modules [6, [11]] for finetuning
and enhancement, due to the lack of clear guidance for instance-level
process in VLMs.

2.2 Zero-shot Referring Expression Comprehension

Zero-shot REC harnesses the generalization ability of VLMs to
understand entity relationships in a provided text description and
choose the corresponding proposal from the candidate bounding
boxes. To better leverage the instance-level understanding capabil-
ities of VLMs, existing methods can be categorized into two path-
ways: finetuning-based methods for instance-level tasks [6} [11} 28],
and visual prompt-based methods incorporating additional visual
cues [20,1231122}127,140]). The finetuning-based methods aim to design
tasks capable of modeling the relationships between instances. For
example, REC_SS [6] disentangles both image and text into triplets
and further introduces a triplet-matching task to facilitate the under-
standing of relationships among the disentangled entities.
Meanwhile, visual prompt-based methods leverage manually
crafted visual prompts to direct the model’s attention. Typically, Red-
Circle [20] replaces the traditional bounding box with a red circle
to further direct the model’s attention. Furthermore, recent studies
aim to explore the impact of fine-grained visual prompts and in-
vestigate the relationship between visual prompts and model atten-
tion. FGVP [27] takes advantage of SAM [12] to generate the fine-
grained visual prompt and achieve a better performance. FALIP [40]]
posits that different visual prompts essentially increase the weights of
the corresponding attention modules, thereby enhancing the model’s
instance-level understanding capabilities by explicitly weighting the
target regions. Given that existing methods with visual prompts focus
on visual perception, whether multimodal prompts could further en-
hance instance-level understanding abilities remains to be explored.

3 Proposed Method

This section begins by defining zero-shot REC and providing an
overview of the pipeline. The proposed MSDP framework, illustrated
in Figure [J] consists of two key components: the textual restructure
and the united visual prompt.

3.1 Problem Statement

The zero-shot REC task takes an image with a set of proposals and
textual captions as input, aiming to achieve the best alignment be-
tween the proposals and the given caption. Specifically, given an
image, we define the box proposal set generated by the image as
P = {p,,}M_,, where M denotes the number of proposals. Subse-
quently, the textual caption set 7 = {t, }2_; corresponding to the
image is also available, where N denotes the number of captions.
Following the setting of [20, 27]], we adopt an image encoder and a
text encoder to obtain features: wm, = E,(p,,,), vn = E¢(t,), where
U, and v, represents the visual and textual feature, respectively.
Then we can calculate the matching score by:

u,, - vn

$(Ppn tn) = sim(Ey(p,, ), Ee(tn)) = T o]l

where s(-,-) denotes the score function. Then, the best match
proposal of the given caption ¢, can be chosen by: p, =
argmax,cp {s(p,tn)}. Furthermore, the overall objective can be
defined as identifying the optimal proposal set P* for each textual

caption t,, € 7, which can be expressed as:

N
Pt = {p; | p & argmax s(p, t")} .
pEP n=1

3.2 Textual Restructure

Existing VLMs mitigate the modality gap between image and text
by pretraining on large-scale image-text pairs. To further reduce
the gap, they introduce aligned textual expressions before the task-
relevant text tﬁf” in the input [17]. To illustrate, in the frequent ex-
ample “A photo of {rexr}”, “A photo of” is associated with the task-
irrelevant text t(”), while the “{fext}” represents the tg” (i.e., tn).
This paradigm also appears in most image-level downstream tasks,
facilitating improved zero-shot performance [[13}[15]. When it comes
to instance-level tasks, e.g., zero-shot REC, introducing prompting or
finetuning [40, 6] to activate the model’s instance-level understand-
ing abilities has become a consensus. Since existing visual prompt-
based methods aim to attract the model’s attention solely from a vi-
sual perspective, it is natural to investigate whether refocusing the
model’s attention from the textual modality can further enhance its
capabilities. Inspired by [8], we argue that concise textual descrip-
tions, which emphasize specific aspects of a scene without delving
into extraneous details, are more effective for feature representation.

To validate this hypothesis, we first propose a textual restructure
strategy. Specifically, we define the total textual caption ££°*% for
each t,, € P containing a task-irrelevant caption t* and a task-
relevant caption ™). To refocus the model’s attention, we aim to
remove the impact of task-irrelevant text t*9) in the total textual cap-
tion ¢£°*%!. The formulation of the original textual feature vector as
utilized in existing methodologies for zero-shot REC can be compre-
hensively described by the following equation:

,U:Lotal —E, (t;otal) _ Et(t<ti) ® tgr'))’ (l)
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Figure 2. Framework of the proposed approach. p: proposal; t(#9); task-irrelevant text. ¢(t™): task relevant text; CVP: coarse-grained visual prompt; FVP:
fine-grained visual prompt. Initially, we apply a textual restructure strategy to remove task-irrelevant semantic features at the textual understanding level, while
the united visual prompt steers the model’s attention at the visual understanding level. Finally, we pair each text with its most relevant proposal p*.

where @ represents the operation of the connection. We can observe
that any target information in the t£°**! will be diluted by the pres-
ence of £(*) (i.e., task-irrelevant text). In a similar vein to existing
methods [20}27]], we perceive t(*) a5 useless information in the tex-
tual domain. To minimize the impact of t*) on the model’s perfor-
mance, we aim to reduce its influence at the feature level. Specifi-
cally, we subtract the textual feature vector v(*) = Et(t(“)) corre-
sponding to t*) from Eq . The entire process can be formalized
as follows:

,v1(’lt'r) _ ,viotal _ ,U(ti)’

@)

(tr)

where v, ’ denotes the semantic decoupled textual feature.

3.3 United Visual Prompt
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Figure 3. A summary of the united visual prompts used in this paper with
the caption “man on the left”. Note that visual prompts highlighted in pink
represent CVP, while those highlighted in green represent FVP.

Existing visual prompt-based methods utilize the initial propos-
als generated by a pre-trained detector to produce specialized vi-
sual prompts. Prior works can be categorized into coarse-grained and

Algorithm 1: The algorithm of the proposed MSDP.

Input : Animage with M box proposals P = {p,, }M_,;
N texts captions 7 = {t, }2_;
Vision and Text Encoder E (), E¢(+).

Output: The optimal proposal set P* for each t,,.

INIT : Generate K + L kinds visual prompts for each

p,, € P.
forn < 1to N do

-

/+ Textual Restructure */
2 Compute the original text feature v1°**! according to Eq.
;
3 Compute the feature of task-irrelevant text prompt
according to v*) = E; (¢(*);
4 Compute the semantic decoupled text feature v
according to Eq. (2);
/% United Visual Prompt */
5 for m < 1to M do
6 for k£ < 1to K do
7 L Compute ufin according to Eq. (3);
8 for [ <+ 1to L do
9 L Compute “(z?n according to Eq. (3);
10 Get U, according to Eq. (4);
1 | Compute 3(p,,,tn) according to Eq. (5);

12 Get the optimal proposal set P according to Eq. (6).

fine-grained visual prompts (i.e., CVP, FVP), depending on the uti-
lization of SAM. We define the different CVPs as [C1]-[C6], and the
FVPs as [F1]-[F3], as illustrated in Fig.El The CVP utilizes the hand-
made visual cue to steer the model’s attention. Meanwhile, the FVP
utilizes SAM to obtain the boundary contours of the target region,
thereby achieving fine-grained representation, which could preserve
more global information than CVP. Since visual prompts of varying



granularities steer the model’s attention differently [40], it is natural
to extend the original proposal with multi-grained prompts for richer
visual representations.

Thus, we propose the united visual prompt strategy. Specifically,
we extend the original proposal set P to P© U P by leveraging
the various visual prompts, where P© and P® represent the images
set after using CVP and FVP. We then define ¢-th CVP and FVP as
¢i(+) and 1;(+), respectively. Hence, we can obtain the coarse- and
fine-grained features for proposal p,, by:

ul) = Eu(¢i(p,,)), 3)
ul) = E, (¢ (SAM(p,,)))-

Since the proposed united visual prompt is a united framework ex-
tendable by any new visual prompt, we define it to contain K coarse-
grained visual prompts and L fine-grained visual prompts. Then we
get the set of visual features U ,,, by:

Un = {u(lcgnv T 7’“‘(;()771} U {u(lf?mv' o 7u(Lf)m}' )

3.4 Overall Objective

Based on the module described above, the revised matching score
3(-,-) between each proposal and the caption can be represented as
follows:

§(Pprtn) = Y sim(u,vi"), (5)

ueclUm

where u represents the visual features of different visual prompts.
The equation shows that the matching score of a proposal is deter-
mined by the sum of similarities between the vision features ob-
tained from united visual prompting and the text features v ob-
tained after textual restructure. Consequently, the best match pro-
posal of the given caption can be chosen by the following equation:
p;, £ argmax,.p {5(p,t.)}. Thereby, the overall objective can
be rewritten as:

N
P = {i); | b = argmax §(p, tn)} . (6)
peP et

To better understand our algorithmic process, we present the de-
tailed flow of MSDP in Algorithm [T]

4 Experiment
4.1 Experimental Setting

Datasets. We evaluate the effectiveness of the proposed MSDP
on widely used REC benchmarks, including RefCOCO [35],
RefCOCO+ [35], and RefCOCOg [16] following the standard cat-
egorization of zero-shot REC methods [27, 22]]. The three datasets
mentioned above are subsets of the COCO [14] dataset, which con-
sists of bounding boxes and masks associated with captioned in-
stances. RefCOCO+ is specifically designed to exclude spatial rela-
tions, focusing solely on appearance-based expressions. In contrast,
the RefCOCO and RefCOCOg datasets encompass both appearance-
based and relation-based expressions. This distinction allows for a
comprehensive evaluation of different types of expression, enabling
a deeper analysis of the challenges posed by spatial relations in refer-
ring expression comprehension. RefCOCO and RefCOCO+ test sets
are divided into two subsets: “TestA” comprises only people, while
“TestB” includes non-people.

Baselines and Performance Criteria. We conduct a compari-
son between MSDP and three distinct categories of methods: 1).
CVP-based methods, including CPT [34], ReCLIP [22], and Red-
Circle [20]]. 2). FVP-based method, FGVP [27], FALIP [40]. 3).
Finetuning-based method, REC_SS [6]]. The evaluation focuses on
the accuracy of text caption and proposals.

Implementation Details. We utilize the CLIP [17]] trained by Ope-
nAl, namely ViT-B/16, ViT-B/32, ViT-L/14@336px, and RN50x 16
backbones, following [27, (12| 40]. Following [6], we also conduct
experiments on FLAVA [21] to further assess the performance of
MSDP across other VLMs. For the fine-grained visual prompt, we
employ SAM-ViT-H, a variant of the SAM [6]. To optimize perfor-
mance, we have established a line thickness of 2 pixels for line-based
visual prompts, while maintaining the mask precision of 1.0. All ex-
periments are conducted on a single RTX 3090 GPU. More details
can be found in the supplementary material.

4.2 Performance Comparison

The results in Table [I] present the comparison of the accuracy for
MSDP and other zero-shot REC methods. To ensure fairness, we uti-
lize the proposals from MAttNet [36] to evaluate the robustness of
the proposed MSDP while ensuring that different proposal selections
only affect the box candidates that are equitably shared among all the
comparison prompting methods, following by [22, 27,/40]. Note that,
we adopt the same baseline as various state-of-the-art methods to en-
sure a fair comparison. Besides the rows marked with *, all results are
sourced from the original papers. The results in Table [I] show that:
1). Under the backbones of various state-of-the-art methods, the pro-
posed MSDP consistently achieves superior performance, with an av-
erage improvement of at least 3.9%. In particular, on the TestA subset
of RefCOCO with the backbone of ViT-L, RNS50, it outperforms the
SOTA method FGVP by 7.4%, indicating that the proposed MSDP
can better activate the VLM’s instance-level understanding capabil-
ity. 2). Compared to CVP-based methods, such as ReCLIP and Red-
Circle, FVP-based methods demonstrate superior performance. For
instance, the FGVP achieves a significant improvement of 5.4% over
RedCircle on average using the ViT-B/32, RN50 baseline. The re-
sults may indicate the FVP makes more contributions to activate
the instance-level understanding abilities. 3). We supervised find that
even under identical conditions, the proposed approach achieves an
average improvement of 10.8% over the finetuning-based state-of-
the-art method REC_SS with the ViT-B/32 baseline. Specifically, on
the TestA subset of RefCOCO with the backbone of ViT-B/32, it
outperforms the SOTA method REC_SS by 20.1%, indicating that
the inherent instance-level understanding can achieve strong perfor-
mance when effectively activated through appropriate methods. 4).
The results using FLAVA demonstrate that the proposed method ex-
hibits strong generalization across different VLMs. Furthermore, the
MSDP outperforms the REC_SS in most cases, with an average per-
formance improvement of 5.3%.

4.3 Ablation Study
4.3.1 Impact of the Textual Restructure

To further validate the contribution of textual restructure, we com-
pare the performance of existing visual prompt-based methods on
each dataset before and after incorporating textual restructure, as il-
lustrated in Table 2] The results indicate that existing visual prompt-
based methods can significantly benefit from the incorporation of



Table 1. The accuracy (%) of zero-shot REC on RefCOCO, RefCOCO+, and RefCOCOg datasets. The best results are highlighted in bold, and the second-best
results are underlined. * is our reproduction.

. RefCOCO RefCOCO+ RefCOCOg
Method Backbone Val TestA TestB Val TestA TestB Val Test VO
CPT Arxiv2022) 32.2% 36.1% 30.3% 31.9% 35.2% 28.8% 36.7% 36.5% 33.5%
ReCLIP[acL2022] 382% 40.5% 37.0% 41.5% 42.9% 41.3% 55.2% 552% 44.0%
RedCircle[gccyvo023] ViT-B/16 453% 52.7% 36.5% 49.4% 57.7% 40.6% 53.7% 53.3% 48.7%
FALIPgccvo024) 46.7% 51.7% 38.3% 51.9% 57.1% 43.0% 54.2% 549% 49.7%
MSDP 61.6% 68.8% 54.6% 59.9% 69.0% 49.5% 63.0% 63.5% 61.2%
CPT{Arxiv2022] 23.8% 22.9% 26.0% 23.5% 21.7% 26.3% 21.8% 22.8% 23.6%
ReCLIP[acL2022] 40.7% 44.0% 37.6% 45.0% 48.2% 41.7% 55.3% 54.4% 45.83%
RedCircle[eccvao23) ViT-B/32 38.7% 451% 33.5% 42.9% 49.5% 36.5% 45.8% 45.6% 422%
REC_SS|cvpRro024] 48.2% 48.4% 49.2% 45.6% 47.6% 42.8% 57.6% 56.6% 49.5%
MSDP 60.5% 68.5% 53.4% 59.7% 68.2% 48.4% 61.2% 62.0% 60.3%
CPT Arxiv2022] 41.3% 40.6% 44.0% 41.3% 41.8% 41.1% 51.3% 512% 44.1%
ReCLIP[acL2022] 42.0% 43.5% 39.0% 47.4% 50.1% 43.9% 57.8% 572% 47.6%
RedCircle[ccvao23 ViT-B/32, RN50 45.6% 54.0% 37.1% 50.7% 60.5% 41.7% 54.0% 53.8% 49.7%
FGVPFNeurIPS2023] 52.0% 55.9% 48.8% 53.3% 60.4% 46.7% 62.1% 61.9% 55.1%
MSDP 63.5% 72.1% 54.3% 62.9% 73.3% 50.7% 64.5% 64.8% 63.3%
RedCircle(ccvao23) 49.8% 58.6% 40.0% 55.3% 63.9% 45.4% 59.4% 589% 53.9%
FGVP [NeurlPs2023] ViT-L, RN50 59.6% 65.0% 52.0% 60.0% 66.8% 49.7% 63.3% 63.4% 60.0%
MSDP 64.0% 72.4% 54.9% 63.5% 73.3% 51.6% 65.5% 65.8% 63.9%
REC_SS+FLAVA FLAVA 49.4% 47.8% 51.7% 48.9% 50.0% 46.9% 61.0% 60.0% 51.9%
MSDP+FLAVA 57.3% 62.8% 53.1% 55.2% 62.5% 47.1% 59.6% 60.2% 57.2%

Table 2. Ablation study of text restructure conducted on RefCOCO, RefCOCO+, and RefCOCOg. TR
performance after applying text restructure to different visual prompt-based methods.

: text restructure. The w/ TR symbol denotes the

Method Backbone RefCOCO RefCOCO+ RefCOCOg AVG
Val TestA TestB Val TestA Testb Val Test
FALIP VIT-B/16 46.7% 51.7% 38.3% 51.9% 57.1% 43.0% 54.2% 54.9% 49.7%
FALIP w/ TR 47.0% 52.5% 40.1% 52.5% 57.9% 45.5% 57.0% 56.4% 51.1%
RedCircle VIT-L. RN50 49.8% 58.6% 40.0% 55.3% 63.9% 45.4% 59.4% 58.9% 53.9%
RedCircle w/ TR ’ 50.0% 58.7% 41.4% 55.5% 64.6% 45.6% 59.9% 58.9% 54.3%
FGVP . 59.6% 65.0% 52.0% 60.0% 66.8% 49.7% 63.3% 63.4% 60.0%
ViT-L, RN50

FGVP w/ TR 59.3% 67.2% 51.7% 60.1% 68.8% 49.6% 63.3% 64.2% 60.5%
MSDP ‘ ViT-L, RN50 ‘ 64.0% 72.4% 54.9% 63.5% 73.3% 51.6% 65.5% 65.8% 63.9%

our proposed textual restructure module. This module enhances the
model’s focus on the textual modality, thereby enhancing instance-
level understanding and overall performance. As shown in Table [2]
all methods show a minimum performance improvement of 0.5% on
average in all three datasets when textual restructure is applied.

Table 3. Ablation study of united visual prompt on RefCOCO.

. RefCOCO
Method Visual Prompt Val TestA  TesiB
Cl 56.1% 64.2% 47.8%
Cl|C3|cC4 57.8% 66.6% 49.4%
MSDP Cl1|F1 58.8% 62.8% 50.6%
Cl1|F1|F2|F3 593% 672% 51.7%
C1|C3|C4|Fl1|ER2 62.9% 71.0% 532%
C1|C3|C4|F1|F2|F3 | 64.0% 72.4% 54.9%

4.3.2 Impact of the United Visual Prompt

To better understand the impact of the united visual prompt, we con-
duct an in-depth performance evaluation on the RefCOCO dataset.
The results presented in Table [3] reveal a proportional relationship
between the inclusion of visual prompts at varying granularities and
method performance, with fine-grained visual prompts yielding sub-
stantial improvements.

4.4 Impact of Different Text Prompts

Considering the distinct impact of different text prompts (i.e., t(),
we select 3 different types of task-irrelevant text (i.e., text prompts)
for the experiment based on length. Note that apart from changing
the text prompt, all other settings remain the same. The results in Ta-
ble [f] demonstrate that longer text prompts can provide better visual
alignment ability.

Table 4. Influence of different text prompts on RefCOCO.
Method Text Prompt RefCOCO
Val TestA  TestB
- 36.6% 355% 54.8%
This is {rext} 62.8% 709% 54.4%
MSDP
A photo of {rext} 64.0% 724% 54.9%
A photo of a {text} 64.1% 727% 551%

4.5 Impact of the Post Process

Note that some methods adopt other strategies including Rela-
tions [22] and Subtraction [20] to obtain the best match proposal
as the post process. Relations focus on enhancing performance by
considering positional relationships between every two proposals.
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Figure 4. Visualization of the model’s attention for the SOTA visual prompt-based method FGVP and the proposed MSDP. The intensity of red indicates a
higher level of attention to the corresponding target region, while greener areas indicate less attention.

Meanwhile, Subtraction utilizes negative text to penalize matching
scores. To investigate the impact and effectiveness of post process,
we conduct a comparative analysis of different post-processing com-
binations on accuracy. Throughout the evaluation, we ensure that
the optimal visual prompt combination remained unchanged. Table
[] presents the results in the RefCOCO datasets. Although the ap-
proach score subtraction approach (denoted as S) achieves better per-
formance, it comes with a higher computational cost. Furthermore,
we observe that utilizing textual restructure alone can achieve perfor-
mance on par with approach S while requiring fewer computational
resources. Finally, we find that combining approach spatial relations
(denoted as R) with textual restructure maximizes the effectiveness
of referring expressions while minimizing computational costs.

4.6 Impact of the Larger Text Encoder

To further investigate the influence of the text encoder on spatial re-
lations, we conduct a comparison of performance and computational
costs using a larger text encoder implemented by spaCy [7]], follow-
ing the setting of ReCLIP [22] on the RefCOCO dataset. The re-
sults in Table[6]demonstrate that larger text encoders improve VLMs’
instance-level understanding capability with minimal impact on stor-
age and time.

Table 5. Ablation study of post-process technique on RefCOCO with un-
changed optimal visual prompts. PP: post-process. TR: Text Restructure. R:
Relation. S: Subtraction.

Method | PP | TR |  Time Cost RefCOCO
Val TestA TestB
R 1.6h 523% 56.6% 49.5%
S 3.7h 549%  60.6% 44.8%
v 1.5h 549%  635%  44.0%
MSDP | R | v 1.7h 64.0% 724% 54.9%
S| v 6.0h 546% 60.3%  44.4%
RS 7.6h 60.0% 64.6% 52.5%
RS| v 13.8h 599% 645% 52.5%

4.7 Impact of Line Thickness

Taking into account that our approach incorporates various line-
based visual prompts, we conduct a detailed parameter study of line
thickness. Specifically, compared to the previous method [27], we
conduct an ablation study on a larger scale by varying the thickness
with a set {1, 2,4, 6, 8}, keeping the color fixed as red. The results
on the RefCOCO dataset depicted in Figure [6| demonstrate the con-
sistent performance of the proposed MSDP across different param-
eter settings. This phenomenon highlights the text features after the
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Figure 5. Visualization of the model’s attention to background noise in existing visual prompt-based methods, both before and following the implementation

of textual restructure.

Table 6. Ablation study of larger text encoder to post-process on RefCOCO
while keeping the optimal visual prompt combination, textual restructure, and
post-process unchanged.

. RefCOCO
Method | GPU Memory | Time Cost Val  TestA TesiB
Normal 14GB 1.7h 64.0% 72.4% 54.9%
Large 17GB 1.9h (+0.2) | 64.1% 72.7% 55.5%

semantic decoupling that not only aids in aligning with visual infor-
mation but also enhances the overall effectiveness of the model.
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Figure 6. The impact of different line thicknesses on RefCOCO.

4.8 Impact of Mask Preciseness

To demonstrate the impact of different mask precisions on zero-shot
performance, we conduct an additional parameter study about mask
precision. The parameter “mask preciseness” enables us to adjust the
size of the mask around the target by expanding or shrinking it. When
the mask preciseness exceeds 1, it indicates an outward expansion.
The results in Figure [7]show the consistent performance of the pro-
posed MSDP with different parameter settings.

4.9 Visualization of Model’s Attention

We present visual results that compare the model’s attention between
the existing SOTA visual prompt-based method and the proposed
MSDP, as illustrated in Figure These results demonstrate that the
simultaneous activation of both text and visual modalities at the in-
stance level improves the model’s ability to direct its attention to the
target region.
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Figure 7. The impact of different mask preciseness on RefCOCO.

4.10 Visualization of the Textual Restructure

To further investigate the impact of textual restructure on the model’s
attention to background noise, we provide visual results that illus-
trate the model’s attention before and after the addition of textual
restructure. The results shown in Figure [ demonstrate that existing
methods that rely solely on visual prompts show noticeable attention
to background noise regardless of the size of the proposal. However,
the incorporation of textual restructure in any method effectively di-
minishes the model’s attention to background noise.

5 Conclusion

In this paper, we explore the effectiveness of multimodal prompts in
activating the instance-level understanding capabilities of VLMs. We
propose MSDP, a simple yet effective approach for zero-shot REC
that considers the activation of instance-level understanding abili-
ties for each modality. The proposed MSDP integrates two strate-
gies, namely textual restructure and united visual prompts, to acti-
vate textual and visual understanding aspects simultaneously. The
experiments achieve SOTA performance across multiple datasets,
demonstrating that the inherent potential of VLMs is fully realized
for instance-level tasks. We aim to explore the activation of VLMs’
instance-level understanding in low-quality or occluded scenes for
tasks like part detection in future studies.
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